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L Overview of Network Models &2 TONGJISEM

m Arc Covering Problem (Chinese Postman Problem - CPP)
* Eulerian Cycle
* CPP Algorithm
m Node Covering Problem (Traveling Salesperson Problem - TSP)
* Insertion Heuristics
° Improvement Heuristics
* MST Heuristic
* Christofides Heuristic
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L Chinese Postman Problem (CPP) &/ TONGJISEM

m Postman travels from door to door covering each street at
least once to deliver mail.
m Find a least cost walk that starts from a node, traverses each
arc at least once, and returns to the starting node.
m Many applications and variations
* Snow plowing
* Street sweeping
* Mail delivery
* CPP with time windows
* Rural CPP
° etc.

]
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4 Background: Eulerian Cycle & TONGISEM

m Defined for an undirected network.

m Closed Walk: A walk that ends at the same node where it starts.

m Eulerian Cycle: A closed walk that passes along each arc exactly
once.

m Degree of a node: Number of arcs incident to the node.

m Theorem: An undirected network has an Eulerian cycle if and only if
the network is connected and every node has an even degree.

* Proof: The degree of a node is twice the number of times it
appears on the walk (except for the starting and ending node).

]
CAMEA LN AAcSE  EQUIS

sEsmreMBAzE A E M




7. Tours and Routings RN [l 5 4 4

% Example Networks with Eulerian Cycle =2/ TONGJISEM
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L Back to Arc Covering Problem/CPP & TONGISEM

m An important fact: The number of odd-degree nodes in any

undirected network is always even.

* Proof:

(1) Each arc contributes 2 degrees, one to each end node. So total
number of degrees across all nodes is even.

(2) Total number of degrees contributed by even-degree nodes is
obviously even (since sum of even numbers is even).

(3) So total number of degrees contributed by odd-degree nodes is
also even.

(4) If number of odd-degree nodes was odd then the sum of their
degrees cannot be even.

(5) So number of odd-degree nodes must be even.

]
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L Solving CPP &/ TONGJISEM
m If all nodes have even degree, then an Eulerian Cycle exists.
m For such a network, Eulerian Cycle is the optimal solution to the

Arc Covering Problem (CPP) (Why?)
m Finding an Eulerian Cycle: Start from any node and continue along
previously uncovered arcs ensuring that the remaining network is

5

not disconnected. 2

]
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L CPP Algorithm & ronauisem

m Basic idea: Given a network G(N,A), add dummy arcs between odd-
degree nodes, so that all nodes become even degree nodes. Ensure
minimum total length of additional arcs. Then find an Eulerian Cycle in
this modified network.

m Details:

(1) Find all odd-degree nodes. Let m be the number of such nodes. Note: We
have already shown that m is an even number.

(2) Find the shortest paths between each pair of odd-degree nodes. (As we
learnt in class, this can be done in polynomial time.)

(3) Using the shortest path costs, find the minimum cost pair-wise matching
of odd-degree nodes. (This can be done in polynomial time too!) Let it be
denoted by arcs A’.

(4) Define augmented network G’(N,AUA’) and find an Eulerian Cycle on G’.
This is the solution to CPP.

CAMEA | ®
B MACSB  EQUIS



7. Tours and Routings TN [l i 5 4%

L CPP Algorithm Example & TONGUISEM

8
A B

m There are four odd-degree nodes: A, B, D, and E.
m Find shortest paths between all 6 combinations: AB, AD, AE,
BD, BE, and DE.

CAMEA | *
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4 CPP Algorithm Example (cont.) & TONGIISEM
m Find minimum cost pair-wise matching of odd-degree nodes.

E () 8 () D

3 Pair-wise Matches:
{AB,ED}: Cost = 16
{AD,EB}: Cost = 19

6 9 {AE,BD}: Cost = 15

> 10 Select {AE, BD} since it is

the optimal matching.

A O : ok
mKey Observation: No two shortest paths in an optimal matching can have
common arcs.
m50 manual matching often works well.
mLocal neighborhood searches are often optimal or near- optlgm,lEA

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ
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L CPP Algorithm Example (cont.) vt LR

m Now find a Eulerian Cycle on this augmented network.

CAMEA \® ppcsB  EQUIS

#EmEEMBAZAAE B ACCREDITED  ACCREDITED



7. Tours and Routings AN il i £
% CPP Algorithm Example (cont.) & TONGJI SEM

m Optimal CPP tour length for original network
= Eulerian cycle length for the augmented network
= Sum of lengths of all arcs of the augmented network
= 8+9+4+5+3+3+6+8+4+6+5+5 = 66.

]
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L CPP Algorithm Example Solution it TONGJI SEM

m Optimal CPP Tour: A-B-G-D-G-E-F-A-F-E-D-C-B-G-A

CAMEA | ®
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L Traveling Salesperson Problem (TSP) &2/ TONGJISEM

m A salesperson travels from city-to-city.
m Find a least cost tour that starts from a city (node), visits every other
city (node) exactly once and returns to the starting city (node).

m Very common problem in many fields.

* Optimizing vehicle routing.

* Determining the landing sequence of aircraft on a runway.

* Machine scheduling in a machine shop.

* Genome sequencing.

* Imaging of celestial objects.

* Testing in semi-conductor manufacturing.

* Optimizing the design of a fiber optics network, etc.

]
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L Solving TSP &/ TONGJISEM

m |t is an “NP-Hard” problem. No known method to solve it exactly (to
optimality) and efficiently (polynomial run times).

m If we find a polynomial time algorithm to solve this problem, then we
would have automatically found a polynomial time algorithm to solve
several other known problems that are equally hard (set of these
problems is called “NP-Complete”).

= Two solution ideas:

* Use simple rules to gradually build a tour - Construction Heuristic
* Use simple rules to gradually improve an existing tour -
Improvement Heuristic

m Construction Heuristics: Start from nothing, or start from a tour on a

small subset of nodes.

]
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L Construction Heuristics %) TONGJISEM
m Construct Starting from Nothing

m Nearest Unvisited Neighbor Heuristic
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% Construction Heuristics (cont.) &2 TONGJISEM

m Insertion Heuristics: Construct Starting From a Smaller Tour on
a Subset of Nodes.

m |nitialization: Create a tour on a small subset of nodes.

°* E.g. 3 node tour.
 E.g. Outer nodes (nodes on the convex hull).

m [terations: Grow the tour progressively by inserting one node at
a time.

m Termination: Stop when the tour covers all the nodes.

]
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L Construction Heuristics ¢ Insertion Heuristics &2/ TONGJI SEM

m Insertion Strategies Farthest
m Nearest insertion O

m Farthest insertion e

m Cheapest insertion O

m Random insertion

Random
Cheapest

O O
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L Euclidean TSP: Performance Bounds &2/ TONGJISEM

® In many problems, distances are Euclidean.

m Performance of the heuristics is defined in terms of
the worst-case ratio of the length of the heuristic
solution tour to the length of the true optimal tour.

mE.g.:
Near.est. Unvisited Neighbor lﬂogz n] _I_l
Heuristic 2 2
Nearest Insertion Heuristic 2
Farthest Insertion Heuristic Unknown
Cheapest Insertion Heuristic 2
Random Insertion Heuristic [log, n] + 1

where n = number of nodes.
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% Improvement Heuristics e
m Nh(T): Neighborhood of tour T.
°* Nh(T) can be defined in many different ways.

m For example,
* All tours obtained by deleting 2 arcs and adding 2 new arcs to T.
* All tours obtained by deleting 3 arcs and adding 3 new arcs to T.
* All tours obtained by switching the positions of 2 points in T, etc.
m General structure of an improvement heuristic is as follows:

e Start with a tour T (could be obtained by nearest unvisited
neighbor method, or randomization, or through any other way).

* While there is a tour T’ in Nh(T) such that length of T’ is less than
that of T, then replace T with T".

* Stop when no such T’ can be found. CAMEA
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% Improvement Heuristics : Two Exchange & TONGJISEM

m Let the neighborhood consist of all tours obtained by deleting
2 arcs and adding 2 new arcs.
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% Improvement Heuristics : Two Exchange (cont.) T TONGJISEM

m After 2 iterations, convergence is reached in this example.
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L MST Heuristics 22 TONGJISEM

1) First, find the minimum spanning tree (MST).

2) Next, merge with a second copy of the MST.

CAMEA | ®
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% MST Heuristics (cont.) & TONGJI SEM

3) Improve by skipping points already visited.
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L Performance MST Heuristics &/ TONGJISEM

Worst-Case Performance can be calculated as follows:
m Removal of one arc of any TSP tour gives a spanning tree.
m Length of Optimal MST
< Length of Optimal TSP - Length of Any Arc of the Optimal TSP
< Length of Optimal TSP.
m S0, length of tour obtained by MST heuristic
< 2*Length of Optimal MST (Why?)
< 2*Length of Optimal TSP
m Thus, worst-case bound for the MST heuristic for TSP is 2.

m This can be improved using Christofides Heuristic.

]
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L Christofides Heuristics &2/ TONGJISEM

1) First, find the minimum spanning tree. Denote it by MST.

CAMEA | *
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% Christofides Heuristics (cont.) & ToNGJISEM

2) Find all odd-degree nodes in the MST and find minimum-cost
pairwise matching of these nodes. Denote it by M.

3) Merge MST and M

|
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% Christofides Heuristics (cont.) & TONGJISEM

4) Improve solution by skipping points already visited.
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L Performance of Christofides Heuristics &2 TONGJISEM

1) Length of Christofides solution
< Length of MST + Length of M
2) Length of MST < Length of TSP.
3) Length of M < Length of M’ < Length of TSP/2.

where M’=Minimum cost pairwise matching of odd-degree nodes of MST
using only arcs that are part of the TSP solution.

* So, length of Christofides solution < (3/2) Length of TSP.

* Thus, worst-case bound for the Christofides heuristic is 3/2

https://research.googleblog.com/2016/09/the-280-year-old-algorithm-inside.html

]
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7. Tours and Routings

L Attention Model

Can we approximately solve TSP rapidly?

ATTENTION, LEARN TO SOLVE ROUTING PROBLEMS!

Wouter Kool Herke van Hoof Max Welling

University of Amsterdam University of Amsterdam University of Amsterdam

ORTEC h.c.vanhoof@uva.nl CIFAR

w.w.m.kool@uva.nl m.welling@uva.nl
ABSTRACT

The recently presented idea to learn heuristics for combinatorial optimization
problems is promising as it can save costly development. However, to push this
idea towards practical implementation, we need better models and better ways
of training. We contribute in both directions: we propose a model based on at-
tention layers with benefits over the Pointer Network and we show how to train
this model using REINFORCE with a simple baseline based on a deterministic
greedy rollout, which we find is more efficient than using a value function. We
significantly improve over recent learned heuristics for the Travelling Salesman
Problem (TSP), getting close to optimal results for problems up to 100 nodes.
With the same hyperparameters, we learn strong heuristics for two variants of the
Vehicle Routing Problem (VRP), the Orienteering Problem (OP) and (a stochas-
tic variant of) the Prize Collecting TSP (PCTSP), outperforming a wide range of
baselines and getting results close to highly optimized and specialized algorithms.

® Recently, other combinatorial problems such as TSP, Vehicle Routing Problem (VRP),
Orienteering Problem (OP) and Prize Collecting TSP (PCTSP) have been solved
successfully using Graph Attention Network models.
® Define a solution as a tour & = (4, 75, ..., m,) or permutation of nodes, so that , €
{1, ...,n} where, m; # m Vt =t
® Then a solution for problem instance s is obtained using a greedy stochastic policy:
p(mls) = iy p(mels, my.e-1)-
. o CAMEA | Rancss  EQUIS
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L Attention Model TONGJI SEM

ention Networks

Published as a conference paper at ICLR 2018

GRAPH ATTENTION NETWORKS

Petar Velickovi¢* Guillem Cucurull*
Department of Computer Science and Technology Centre de Visié per Computador, UAB
University of Cambridge gcucurull@gmail.com

petar.velickovic@ecst.cam.ac.uk

Arantxa Casanova* Adriana Romero
Centre de Visi6 per Computador, UAB Montréal Institute for Learning Algorithms
ar.casanova.8@gmail.com adriana.romero.soriano@umontreal.ca
concat/avg
-~ > Pietro Lid Yoshua Bengio
Department of Computer Science and Technology ~ Montréal Institute for Learning Algorithms
University of Cambridge yoshua.umontreal@gmail.com

pietro.lio@cst.cam.ac.uk

ABSTRACT

We present graph attention networks (GATs), novel neural network architectures
that operate on graph-structured data, leveraging masked self-attentional layers to
address the shortcomings of prior methods based on graph convolutions or their
approximations. By stacking layers in which nodes are able to attend over their
neighborhoods” features, we enable (implicitly) specifying different weights to

Figure 1: Left: The attention mechanism a(Wﬁi,Wﬁj) employed by our model, parametrized

by a weight vector & € R2F" | applying a LeakyReLU activation. Right: An illustration of multi- different nodes in a neighborhood, without requiring any kind of costly matrix op-
head . ith K = heads) b de 1 . ichborhood. Diff 1 d eration (such as inversion) or depending on knowing the graph structure upfront.
ead attention (wit = 3 heads) by node 1 on its neighborhood. Different arrow styles an In this way, we address several key challenges of spectral-based graph neural net-

colors denote independent attention computations. The aggregated features from each head are works simultaneously, and make our model readily applicable to inductive as well
- as transductive problems. Our GAT models have achieved or matched state-of-the-
concatenated or averaged to obtain hl' art results across four established transductive and inductive graph benchmarks:
the Cora, Citeseer and Pubmed citation network datasets, as well as a protein-
protein interaction dataset (wherein test graphs remain unseen during training).

- h= {h_{, h_z), ,h—N:} Node features

a: Single layer feedforward neural network
 W: Weight matrix
o: Nonlinearity

exp (LeakyReLU (&7 [Wh;||Wh;]

Qi = . 5 5 }_i/ =0 Z OéijWEj .
> ken, €xp | LeakyReLU (&' [Wh;||Why] Jen

)

where -7’ represents transposition and || is the concatenation operation.
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L Attention Model %) TONGJI SEM

* Encoder: 3 main layers each with 2 sublayers =9 ©® © 0 e
* A multi-head attention layer (MHA) T
» Node-wise fully connected feed-forward (FF) layer (© 1 - 6 - &

Figure 1: Attention based encoder. Input nodes

Y Decod er: are embedded and processed by N sequential
* lavers, each consisting of a multi-head attention
_ Node embedding O Context node embedding l:_j Learned input symbol Message Compatibility HA) ElI'ld HOdE‘,-WiSC feed-forward (FF) Sllb-
O Graph embedding OO) Concatenation Output probability ‘, Attention query : Identity / reference Cr. rghe cigraphbe?;eddln:Bg ISt Comp];lltEd aSl the
. an oI node emoeadings. best viewed 1n ColOor.
/ h}“,’v.' ‘-,f Ecl,\l) l:‘zm _'::(‘M l:i”\ L, ] \
MHA '
[T i 4
h:N)*” . () () (
P P2l TPl s :
3 4
\ e Decoder t = | / /

Figure 2: Attention based decoder for the TSP problem. The decoder takes as input the graph
embedding and node embeddings. At each time step ¢, the context consist of the graph embedding
and the embeddings of the first and last (previously output) node of the partial tour, where learned
placeholders are used if ¢ = 1. Nodes that cannot be visited (since they are already visited) are
masked. The example shows how a tour w = (3, 1,2, 4) is constructed. Best viewed in color.

* Trained using REINFORCE with greedy rollout baseline A B s e
(Williams, 1992) reamace e A8 EQUIS
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Objective :

Key Concepts :
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