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Chapter 7. Tours and Routings
⤷ Overview of Network Models

Arc Covering Problem (Chinese Postman Problem – CPP)

• Eulerian Cycle

• CPP Algorithm

Node Covering Problem (Traveling Salesperson Problem – TSP)

• Insertion Heuristics

• Improvement Heuristics

• MST Heuristic

• Christofides Heuristic



7. Tours and Routings
⤷ Chinese Postman Problem (CPP)

Postman travels from door to door covering each street at 
least once to deliver mail.

Find a least cost walk that starts from a node, traverses each 
arc at least once, and returns to the starting node.

Many applications and variations
• Snow plowing
• Street sweeping
• Mail delivery
• CPP with time windows
• Rural CPP
• etc.



7. Tours and Routings
⤷ Background: Eulerian Cycle 

Defined for an undirected network.

Closed Walk: A walk that ends at the same node where it starts.

Eulerian Cycle: A closed walk that passes along each arc exactly 
once.

Degree of a node: Number of arcs incident to the node.

Theorem: An undirected network has an Eulerian cycle if and only if 
the network is connected and every node has an even degree.

•Proof: The degree of a node is twice the number of times it 
appears on the walk (except for the starting and ending node).



7. Tours and Routings
⤷ Example Networks with Eulerian Cycle 
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7. Tours and Routings
⤷ Back to Arc Covering Problem/CPP

An important fact: The number of odd-degree nodes in any 
undirected network is always even.
• Proof:
(1) Each arc contributes 2 degrees, one to each end node. So total 

number of degrees across all nodes is even. 
(2) Total number of degrees contributed by even-degree nodes is 

obviously even (since sum of even numbers is even).
(3) So total number of degrees contributed by odd-degree nodes is 

also even.
(4) If number of odd-degree nodes was odd then the sum of their 

degrees cannot be even.
(5) So number of odd-degree nodes must be even.



7. Tours and Routings
⤷ Solving CPP

 If all nodes have even degree, then an Eulerian Cycle exists.
For such a network, Eulerian Cycle is the optimal solution to the 

Arc Covering Problem (CPP) (Why?)
Finding an Eulerian Cycle: Start from any node and continue along 

previously uncovered arcs ensuring that the remaining network is 
not disconnected.
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7. Tours and Routings
⤷ CPP Algorithm
Basic idea: Given a network 𝐺𝐺(𝑁𝑁,𝐴𝐴), add dummy arcs between odd-

degree nodes, so that all nodes become even degree nodes. Ensure 
minimum total length of additional arcs. Then find an Eulerian Cycle in 
this modified network.

Details:
(1) Find all odd-degree nodes. Let 𝑚𝑚 be the number of such nodes. Note: We 

have already shown that 𝑚𝑚 is an even number.
(2) Find the shortest paths between each pair of odd-degree nodes. (As we 

learnt in class, this can be done in polynomial time.)
(3) Using the shortest path costs, find the minimum cost pair-wise matching 

of odd-degree nodes. (This can be done in polynomial time too!) Let it be 
denoted by arcs 𝐴𝐴𝐴.

(4) Define augmented network 𝐺𝐺𝐺 𝑁𝑁,𝐴𝐴∪𝐴𝐴𝐴 and find an Eulerian Cycle on 𝐺𝐺𝐺. 
This is the solution to CPP.



7. Tours and Routings
⤷ CPP Algorithm Example
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 There are four odd-degree nodes: A, B, D, and E.
 Find shortest paths between all 6 combinations: AB, AD, AE, 

BD, BE, and DE.

DE



7. Tours and Routings
⤷ CPP Algorithm Example (cont.)

Find minimum cost pair-wise matching of odd-degree nodes.

• 3 Pair-wise Matches:
 𝐴𝐴𝐴𝐴,𝐸𝐸𝐸𝐸 : Cost = 16
 𝐴𝐴𝐴𝐴,𝐸𝐸𝐸𝐸 : Cost = 19
 𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵 : Cost = 15

• Select 𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵 since it is 
the optimal matching.

Key Observation: No two shortest paths in an optimal matching can have 
common arcs.
So manual matching often works well. 
Local neighborhood searches are often optimal or near-optimal.
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7. Tours and Routings
⤷ CPP Algorithm Example (cont.)
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Now find a Eulerian Cycle on this augmented network.



7. Tours and Routings
⤷ CPP Algorithm Example (cont.)

Optimal CPP tour length for original network 
= Eulerian cycle length for the augmented network 
= Sum of lengths of all arcs of the augmented network
= 8+9+4+5+3+3+6+8+4+6+5+5 = 66.
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7. Tours and Routings
⤷ CPP Algorithm Example  Solution 

Optimal CPP Tour: A-B-G-D-G-E-F-A-F-E-D-C-B-G-A
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7. Tours and Routings
⤷ Traveling Salesperson Problem (TSP)

A salesperson travels from city-to-city.
Find a least cost tour that starts from a city (node), visits every other 

city (node) exactly once and returns to the starting city (node).
Very common problem in many fields.

• Optimizing vehicle routing.
• Determining the landing sequence of aircraft on a runway.
• Machine scheduling in a machine shop.
• Genome sequencing.
• Imaging of celestial objects.
• Testing in semi-conductor manufacturing. 
• Optimizing the design of a fiber optics network, etc.



7. Tours and Routings
⤷ Solving TSP 

 It is an “NP-Hard” problem. No known method to solve it exactly (to 
optimality) and efficiently (polynomial run times).

 If we find a polynomial time algorithm to solve this problem, then we 
would have automatically found a polynomial time algorithm to solve 
several other known problems that are equally hard (set of these 
problems is called “NP-Complete”).

Two solution ideas:
• Use simple rules to gradually build a tour – Construction Heuristic
• Use simple rules to gradually improve an existing tour –

Improvement Heuristic
Construction Heuristics: Start from nothing, or start from a tour on a 

small subset of nodes.



7. Tours and Routings
⤷ Construction Heuristics

Construct Starting from Nothing
Nearest Unvisited Neighbor Heuristic



7. Tours and Routings
⤷ Construction Heuristics (cont.)

 Insertion Heuristics: Construct Starting From a Smaller Tour on 
a Subset of Nodes.

 Initialization: Create a tour on a small subset of nodes.

• E.g. 3 node tour.

• E.g. Outer nodes (nodes on the convex hull).

 Iterations: Grow the tour progressively by inserting one node at 
a time.

Termination: Stop when the tour covers all the nodes.



7. Tours and Routings
⤷ Construction Heuristics • Insertion Heuristics

 Insertion Strategies
 Nearest insertion
 Farthest insertion
 Cheapest insertion
 Random insertion
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Random



7. Tours and Routings
⤷ Euclidean TSP: Performance Bounds

 In many problems, distances are Euclidean.

Performance of the heuristics is defined in terms of 
the worst-case ratio of the length of the heuristic 
solution tour to the length of the true optimal tour.

E.g.: Heuristic Ratio Bound

Nearest Unvisited Neighbor 
Heuristic

1
2

log2 𝑛𝑛 +
1
2

Nearest Insertion Heuristic 2

Farthest Insertion Heuristic Unknown

Cheapest Insertion Heuristic 2

Random Insertion Heuristic log2 𝑛𝑛 + 1

where n = number of nodes.



7. Tours and Routings
⤷ Improvement Heuristics

𝑁𝑁𝑁 𝑇𝑇 : Neighborhood of tour T.

• 𝑁𝑁𝑁 𝑇𝑇 can be defined in many different ways.

For example,

• All tours obtained by deleting 2 arcs and adding 2 new arcs to 𝑇𝑇.

• All tours obtained by deleting 3 arcs and adding 3 new arcs to 𝑇𝑇.

• All tours obtained by switching the positions of 2 points in 𝑇𝑇, etc.

General structure of an improvement heuristic is as follows:

• Start with a tour 𝑇𝑇 (could be obtained by nearest unvisited 
neighbor method, or randomization, or through any other way).

• While there is a tour 𝑇𝑇𝑇 in 𝑁𝑁𝑁 𝑇𝑇 such that length of 𝑇𝑇𝑇 is less than 
that of 𝑇𝑇, then replace 𝑇𝑇 with 𝑇𝑇𝑇.

• Stop when no such 𝑇𝑇𝑇 can be found.



7. Tours and Routings
⤷ Improvement Heuristics : Two Exchange

 Let the neighborhood consist of all tours obtained by deleting 
2 arcs and adding 2 new arcs.



7. Tours and Routings
⤷ Improvement Heuristics : Two Exchange (cont.)

After 2 iterations, convergence is reached in this example.



7. Tours and Routings
⤷ MST Heuristics  

1) First, find the minimum spanning tree (MST).
2) Next, merge with a second copy of the MST.



7. Tours and Routings
⤷ MST Heuristics (cont.)  

3) Improve by skipping points already visited.



7. Tours and Routings
⤷ Performance MST Heuristics

Worst-Case Performance can be calculated as follows:

Removal of one arc of any TSP tour gives a spanning tree.

 Length of Optimal MST

≤ Length of Optimal TSP – Length of Any Arc of the Optimal TSP

< Length of Optimal TSP.

 So, length of tour obtained by MST heuristic

≤ 2*Length of Optimal MST (Why?)

< 2*Length of Optimal TSP

Thus, worst-case bound for the MST heuristic for TSP is 2.

This can be improved using Christofides Heuristic.



7. Tours and Routings
⤷ Christofides Heuristics

1) First, find the minimum spanning tree. Denote it by MST.



7. Tours and Routings
⤷ Christofides Heuristics (cont.) 

2) Find all odd-degree nodes in the MST and find minimum-cost 
pairwise matching of these nodes. Denote it by M.

3) Merge MST and M



7. Tours and Routings
⤷ Christofides Heuristics (cont.) 

4) Improve solution by skipping points already visited.



7. Tours and Routings
⤷ Performance of Christofides Heuristics

1) Length of Christofides solution 

≤ Length of MST + Length of M

2) Length of MST < Length of TSP.

3) Length of M ≤ Length of M’ ≤ Length of TSP/2.

where M’=Minimum cost pairwise matching of odd-degree nodes of MST 
using only arcs that are part of the TSP solution.

• So, length of Christofides solution < (3/2) Length of TSP.

• Thus, worst-case bound for the Christofides heuristic is 3/2

https://research.googleblog.com/2016/09/the-280-year-old-algorithm-inside.html

https://research.googleblog.com/2016/09/the-280-year-old-algorithm-inside.html


7. Tours and Routings
⤷ Attention Model

Can we approximately solve TSP rapidly?

• Recently, other combinatorial problems such as TSP, Vehicle Routing Problem (VRP), 
Orienteering Problem (OP) and Prize Collecting TSP (PCTSP) have been solved 
successfully using Graph Attention Network models.

• Define a solution as a tour 𝜋𝜋 = 𝜋𝜋1,𝜋𝜋2, … ,𝜋𝜋𝑛𝑛 or permutation of nodes, so that 𝜋𝜋𝑡𝑡 ∈
1, … ,𝑛𝑛 where, 𝜋𝜋𝑡𝑡 ≠ 𝜋𝜋𝑡𝑡′ ∀𝑡𝑡 ≠ 𝑡𝑡𝑡.

• Then a solution for problem instance 𝑠𝑠 is obtained using a greedy stochastic policy:
𝑝𝑝 𝜋𝜋|𝑠𝑠 = Π𝑡𝑡=1𝑛𝑛 𝑝𝑝 𝜋𝜋𝑡𝑡|𝑠𝑠,𝜋𝜋1:𝑡𝑡−1 .

• This policy is easy to implement rapidly in real-time. But how to train it?



7. Tours and Routings
⤷ Attention Model

Graph Attention Networks

• 𝐡𝐡 = ℎ1,ℎ2, … ,ℎ𝑁𝑁𝑖𝑖 : Node features

• 𝐖𝐖: Weight matrix
• 𝒂𝒂: Single layer feedforward neural network

• 𝜎𝜎: Nonlinearity 



7. Tours and Routings
⤷ Attention Model

• Encoder: 3 main layers each with 2 sublayers
• A multi-head attention layer (MHA)
• Node-wise fully connected feed-forward (FF) layer

• Decoder:

• Trained using REINFORCE with greedy rollout baseline 
(Williams, 1992)



Chapter 7. Tours and Routings • Brief summary

Objective :

Key Concepts ：
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